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Large-eddy simulations of a subsonic three-dimensional cavity flow with self-
sustaining oscillations are carried out for a Reynolds number based on the length of
the cavity equal to 7 × 106. Meticulous comparisons with available experimental data
corresponding to the same configuration demonstrate a high level of accuracy. Special
attention is paid to the mixing layer that develops over the cavity and two different
zones are identified. The first one is dominated by Kelvin–Helmholtz instability, and
the linear as well as quadratic energy transfers leading to the filling of velocity spectra
are described. The Kelvin–Helmholtz instability also appears to be forced near the
origin of the layer, and it is postulated that the small recirculation bubble located
in this area is responsible for the forcing. Downstream of the first zone and up to
the vicinity of the aft wall, the layer behaves very similarly to a free mixing layer by
exhibiting a linear spreading. An influence of the recirculating flow inside the cavity
upon the growth of the layer is nevertheless observed at downstream stations. Analysis
of the pressure on the floor of the cavity reveals that the self-sustaining oscillation-
related pressure modes (Rossiter modes) are independent of their spanwise location
inside the cavity. On the contrary, Rossiter modes exhibit streamwise modulations
and it is demonstrated that a very simple two-wave model is able to reproduce
the spatial shape of the modes. Nonlinear interactions between Rossiter modes are
encountered, as well as nonlinear interactions with low-frequency components. A joint
time–frequency analysis shows a temporal modulation of the Rossiter mode levels at
similar low frequencies, resulting in a special form of intermittency with competitive
energy exchanges between modes.

1. Introduction
1.1. Context of the study

For both theoretical and practical reasons, flows past cavities have been intensively
studied for decades since the pioneering works of Roshko (1955) and Karamcheti
(1955), as illustrated in reviews by Rockwell & Naudascher (1978), Komerath,
Ahuja & Chambers (1987) and Colonius (2001). Most of these studies, experimental,
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analytical and, more recently, numerical ones, focus on the strong self-sustained
pressure oscillations that arise from the vorticity–pressure feedback loop encountered
in this kind of flow. The few works including velocity data were either carried out for
incompressible water flows (Gharib & Roshko 1987; Knisely & Rockwell 1982; Lin &
Rockwell 2001) or low-Mach-number air flows (Sarohia 1975) with quite low Reynolds
numbers. Cattafesta et al. (1997) performed 0.15 Mach number wind-tunnel tests with
cavity length-based Reynolds numbers up to 1.6 × 106 and provide some shear-layer
hot-wire measurements. On the other hand, technical advances render possible the
experimental particle image velocimetry (PIV) (Forestier, Jacquin & Geffroy 2003)
and numerical large-eddy simulation (LES) (Gloerfelt et al. 2002; Larchevêque et al.
2003) studies of cavity flows including velocity fields at high subsonic speed, but with
a Reynolds number still remaining lower than one million. The goal of the present
work is to provide an extensive description and analysis of both the pressure and of
the velocity flow field for a subsonic flow past a cavity for a Reynolds number as high
as 7 × 106. This is achieved by performing large-eddy simulations of a configuration
for which only experimental pressure data are available.

1.2. Physics of cavity flows

Though some cavities known as closed cavities could lead to broadband noise when
immersed into a flow field, the flow past cavities is generally characterized by large
pressure oscillations at discrete frequencies, provided that the length of the cavity
is long enough compared to the thickness of the incoming boundary layer (Sarohia
1975). These oscillations can originate from various phenomena which could involve
fluid–structure interactions, but are mostly purely hydrodynamic in nature. We can
briefly mention the ‘wake mode’ highlighted by Gharib & Roshko (1987) and in
some recent numerical studies (Shieh & Morris 2001; Rowley, Colonius & Basu 2002;
Gloerfelt, Bailly & Juvé 2003), where intense drag fluctuations are observed because
of the ejection of very large vortices out of the cavity. Such behaviour seems to
be preferentially related to two-dimensional or axisymmetrical configurations and,
according to Rowley et al. (2002), could be partially due to an absolute instability.

Nevertheless, pressure oscillations are most frequently due to a coupling between
the mixing layer developing over the cavity and the pressure field, and the resulting
interaction is described as a ‘shear mode’ by Rowley et al. (2002). Following Rockwell
& Naudascher (1978), this coupling can be classified as flow-resonant or flow-dynamic.
For the first kind of interaction, the pressure part of the loop is due to the acoustic
proper modes of the cavity. Plumbee, Gibson & Lassiter (1962) were the first to
describe such mechanisms for a deep cavity, and East (1966) demonstrates that they
generally occur for a low external velocity. Note that the inviscid theoretical proper
modes’ frequencies of a cavity within the zero Mach number limit have been computed
by Tam (1976).

For the flow-dynamic category, the pressure feedback is induced by the impact
and stretching of the vortices of the shear layer at the aft edge of the cavity. The
resulting pressure field outside the cavity is clearly deduced from the early schlieren
visualizations by Karamcheti (1955), and a similar view issued from the present
work is presented in figure 1. Comparisons with Karamcheti’s pictures reveal a more
complex wave pattern outside the cavity in the present flow, presumably because of
the much higher Reynolds number, thus leading to a highly turbulent region inside
the cavity and in its vicinity. Karamcheti (1955) also highlights the influence of the
nature of the incoming boundary layer on the levels of the fluctuations which are
found to be higher for the laminar case.
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35°

Figure 1. Instantaneous pseudoschlieren view issued from computation.

Another major contribution to the study of cavities belonging to the flow-dynamic
category is the formula proposed by Rossiter (1964) to predict the frequency of the
cavity tones. This formula is an adaptation of the one by Powell (1961) which predicts
the resonant frequencies of the closely related problem of edge tones. The Rossiter
formula reads:

fn =
U∞

L

n − γ

M∞ + 1/κ
, (1.1)

where U∞ and M∞ are the external flow velocity and Mach number, respectively, L

is the length of the cavity, n is the mode number, and γ and κ are two constants
adjusted from experiments. We generally consider κ = 0.57, γ being a function of the
length-to-depth ratio L/D which varies from nearly zero for low ratio (deep cavity,
see Larchevêque et al. 2003) to 0.57 for L/D = 10 (this latter bound is close to the
upper ratio value leading to resonant cavity flows). Beside the prediction of the tone
frequencies, the interest of Rossiter’s works is to provide an a posteriori interpretation
of (1.1) based on the identification of two phenomena which are responsible for
the resonant loop: mixing-layer vortices moving downstream at velocity κ U∞ and
pressure waves travelling upstream inside the cavity at the speed of sound. A vortex
is created at the mouth of the cavity through the disturbances induced by upstream-
travelling pressure waves and an upstream-travelling pressure wave is emitted at the
downstream edge with a phase shift equal to γ after the impact of a vortex. Note that
despite its rather simple construction, the semi-empirical formula (1.1) or its modified
version for supersonic flow by Heller et al. (1973) have been used with great success
to predict the frequencies of tones observed for a wide class of cavity flows. Note that
because of this concordance, such tones will hereinafter be referred to as Rossiter
modes.

Following Rossiter, by considering both a forced mixing layer and an acoustic
feedback, multiple authors tried to reduce the empiricism of the approach by
introducing in their models stability considerations for the shear layer. Some studies
take into account infinitely thin vortex sheet stability (Bilanin & Covert 1973), with
addition of image sources (Block 1976) to model reflections on the floor or including
a pseudo-piston effect at the aft edge (Heller & Bliss 1975) so as to mimic the
inflow/outflow process in this region, as highlighted by Spee (1966). Tam & Block
(1978) introduced a finite layer thickness by means of hyperbolic tangent profiles
similar to that used in the stability analysis by Michalke (1965) of a free mixing layer,
and their results agree favourably with experiments.
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Some experimental measurements related to incompressible or low-Mach-number
flow (Sarohia 1975; Gharib & Roshko 1987; Cattafesta et al. 1997) confirm the sim-
ilitude between free and cavity shear layers by demonstrating a linear growth for the
layer at a rate that agrees with free shear-layer experiments. However, for high sub-
sonic flow, studies by Gloerfelt et al. (2002), Forestier et al. (2003) and Larchevêque
et al. (2003) suggest the existence of two linear regions, the first one located in the
vicinity of the fore wall and leading to higher spreading rate. Forestier et al. (2003)
pointed out that this characteristic resembles that observed for a subharmonic forced
free shear layer known as ‘collective interaction’ (Ho & Huang 1982) which quickly
yields large vortical structures from high-frequency small vortices. This explanation
allows the authors to solve the paradox noted by Lin & Rockwell (2001) related to two
different instabilities within the shear layer: Kelvin–Helmholtz related small-scale and
large-scale structures such as those seen in figure 1 which are included in Rossiter’s
model.

Finally, even though the loop described by Rossiter predominates in flow-dynamics
resonant cavity, secondary phenomena have been reported: pure acoustic modes
(Heller, Holmes & Colvert 1971); three-dimensional effects (Maull & East 1963;
Rockwell & Knisely 1980); nonlinear interactions with low frequency components
(Knisely & Rockwell 1982) or between modes (Kegerise et al. 2004). The latter study
also highlights a special form of intermittency for the Rossiter modes referred to
as ‘mode switching’ by the authors, where the dominant Rossiter mode varies in
time because of low-frequency amplitude modulations. The unsteady low-frequency
variations of amplitude due to nonlinear interactions observed by Knisely & Rockwell
(1982) may be related to this process.

1.3. Description of the configuration

The configuration used for this study is related to the extensive high-Reynolds
subsonic cavity wind-tunnel tests carried out at QinetiQ, formerly Defence and
Research Agency (DERA), UK. They made available a large amount of unsteady
pressure measurements which are useful for computation validations (Henshaw 2000).
The cavity is three-dimensional, with a length L =0.508 m, the depth D and the width
W being equal to 0.1016 m. The length-to-depth ratio L/D = 5 is such that the shear
layer does not reattach on the floor of the cavity (open cavity), resulting in a cavity
response of a flow-dynamic kind. The inflow Mach number M= 0.85 was obtained
from stagnation pressure pi = 99540 Pa and temperature Ti =301 K, corresponding
to a free-stream velocity of U∞ = 276.45 m s−1 and a cavity length based Reynolds
number close to 7 million.

1.4. Organization of the paper

The paper is organized as follows. In § 2, the key elements of the numerical method
used in this study are described briefly, including subgrid modelling, numerical
schemes, time integration and boundary conditions. The validation procedure
presented in § 3 is divided into two parts: a grid convergence study is described
in § 3.1 while § 3.2 is devoted to spectral comparisons with the experimental pressure
measurements.

The shear-layer mean properties such as the growth rate and spatial and temporal
correlations are discussed in § 4, together with a description of the coherent structures
dynamics. Spectral analysis of LES data is carried out in § 5: the mixing layer is
studied in § 5.1, with emphasis on the initial region of the layer by means of cross
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and bispectral analyses; interpretations of pressure spectra on the floor of the cavity
are provided in § 5.2, highlighting the presence of several different pressure modes;
finally, joint time–frequency analyses are performed in § 5.3 so as to characterize the
‘mode switching’ phenomenon.

Lastly, the main results are summarized in § 6.

2. Numerical methods
Because of the high subsonic nature of the flow past the cavity, the compressible

Navier–Stokes equations are considered. The LES equations are obtained using Favre
filtering according to the formalism developed by Vreman, Geurts & Kuerten (1995),
and the filtered equations are closed by means of a subgrid-scale viscosity and Prandtl
analogy in a similar way to that proposed by Vreman et al. (1995). The whole process
is further detailed in Larchevêque et al. (2003). The model retained to compute
subgrid viscosity is the selective mixed-scale model introduced for compressible flows
by Lenormand et al. (2000). This model relies on an estimation of the turbulent
kinetic energy at the cutoff using a test filter coupled with a structural sensor based
on the angle between vorticity and test-filtered vorticity.

Both spatial and temporal integration are carried out by means of second-order-
accurate schemes. The spatial scheme belongs to the AUSM+(P) family and is
described in Mary & Sagaut (2002). Time integration is performed through an
implicit Gear like scheme (see Pechier, Guillen & Cayzac 2001, for details). Note that
Raverdy et al. (2003) demonstrate the suitability of this approach for LES.

Because cavity flows exhibit strong pressure waves, it is of importance to ensure that
the boundary conditions will not yield reflected waves that could affect the accuracy
of the computation. In the present work, this is enforced by using non-reflective
inflow/outflow characteristic-based treatment together with strong mesh stretching
near the boundaries in the two directions related to the main propagation of the
Rossiter pressure waves, namely the streamwise and vertical ones. The method was
successfully used for the deep cavity flow LES by Larchevêque et al. (2003). The
boundaries are also put far away enough from the cavity, with the distance on either
side of the cavity zone equal to 1.55L � 0.8 m for each of these two directions. Since
no experimental data regarding the velocity field are available, the inflow velocity
profiles are obtained from a thin boundary-layer simulation with a developing length
set equal to the distance observed in the experimental set-up from the origin of the
flat plate where the cavity model lies to the location corresponding to the inflow
boundary. In the spanwise direction, symmetry conditions are set for boundaries
located 0.7L � 0.35 m away from the cavity.

Concerning the wall boundary conditions, two different treatments are used. The
standard no-slip boundary condition is enforced for the five walls of the cavity. For
the flat plate surrounding the cavity where the boundary layer can be approximated as
a flat-plate boundary layer, a wall model based on a three-dimensional instantaneous
viscous/logarithmic sublayer approach is used, with a typical first cell normal to the
wall dimension of 70 wall units. Some details about this model can be found in
Larchevêque et al. (2003).

3. Validation
3.1. Grid convergence study

Before validating the simulation by means of comparison with available experimental
pressure data, we have to measure the influence of the mesh resolution and numerical
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Cells across initial Estimated cutoff
Computation Mesh vorticity thickness Time step (s) CFL max frequency (Hz)

C Coarse 8 10−5 ∼ 20 > 12 500
F Fine 10 10−5 ∼ 20 > 12 500
C2 Coarse 8 2 × 10−5 ∼ 40 > 6500

Table 1. Characteristics of the computations.
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Figure 2. View of the coarse mesh: one every fourth cell is plotted.

scheme on the numerical results. Three different computations have been carried out
in order to make sure that a grid-independent solution for the large structures is
obtained. The main characteristics of the computations are detailed in table 1.

To evaluate the influence of grid resolution, two different multiblock meshes have
been designed. The first one, referred to as the coarse grid, is plotted in figure 2. It
includes about three million cells, with 1003 of them inside the cavity, where the first
layers are located 5 × 10−4 m away from the five walls. On the mixing layer horizontal
centreplane, cells have a height of 3 × 10−4 m. In the streamwise x and vertical z

directions, double hyperbolic tangent distributions are used, resulting in a stretch
ratio of about 6%, while the mesh is uniform in the spanwise direction. The total
number of cells has been significantly reduced by using local mesh refinement in the
streamwise direction in subdomains located inside and over the cavity. See Mary &
Sagaut (2002) for details of the specific treatment that is performed at the interfaces
between blocks with different cell size. The second mesh has twice as many cells as
the first one and is referenced as fine in table 1. The mesh refinement is obtained by
multiplying the number of cells in both the transverse (y) and vertical (z) directions
by 1.4 while keeping the cell sizes at domain boundaries unmodified. Simulations C
and F use the coarse and fine grids, respectively. It is important that both grids have
a sufficient number of cells across the boundary layer at the separation point, so that
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Figure 3. (a) Mean longitudinal velocity (b) mean vertical velocity (c) turbulent energy and
(d ) cross-Reynolds stress u′w′ profiles: −−−−, coarse mesh; · · · , coarse mesh, �t × 2; − − −,
fine mesh.

the initial growth of the separated shear layer over the cavity is correctly captured.
Note that the grid resolution on the present coarse grid in that region of the flow is
equivalent to that of the fine-grid simulation of the flow over a deep cavity presented
in Larchevêque et al. (2003).

An additional computation, referred to as C2, is performed on the coarse mesh
with a doubled time step in order to quantify the influence of the time step.

In this section, the comparison between simulations is related to the velocity field
statistics only. The pressure spectra will be discussed in the next section, supported by
the experimental data available. For all the computational cases, the statistical data
have been collected over a physical sampling time of 0.5 s, after a relaxation time of
0.1 s from the beginning of the simulation which is necessary to obtain a statistically
steady flow. The time of 0.5 s corresponds to more than 60 periods (based on the
lowest Rossiter frequency) and therefore is long enough to obtain converged first-
and second-order statistics.

The mean velocity profiles on the central (x, y)-plane are plotted in figure 3. The
three computations obviously lead to very similar results. The main differences, which
take place around x/D = 3.5 for the vertical velocity, w, are lower than 4% of the
free-stream velocity and are related to very low velocities (one order of magnitude
lower than the streamwise velocity levels, u, at the same place). Because the F
computation departs from the very similar C and C2 simulations, the influence of the
mesh resolution seems to prevail over the influence of the time step. The turbulent
kinetic energy, k, and the shear stress profiles are presented in figure 3, leading to the
same conclusion. The greatest difference is found once again at location x/D =3.5,
and is equal to about 10% of the local maximum value of k, showing that the coarse
mesh is fine enough to resolve almost all the energetic eddies. However, because a
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Peak number 1 2 3 4

Rossiter’s formula† 148 357 566 775
Experiments 135 350 590 820
C computation 125 360 585 825
F computation 125 355 575 815
C2 computation 125 345 565 775

† Using κ = 0.57 and γ (L/D ≡ 5) = 0.29 as proposed in Larchevêque et al. (2003).

Table 2. Frequency (Hz) of pressure spectra peaks.

difference between coarse and fine mesh computations, although small, still exists, it
is believed that a coarser grid should significantly alter the results. Despite the long
sampling time used in this study, the shear stress does not seem to be fully converged
in the lower downstream part of the cavity. At this location, the behaviour of the
flow is highly unsteady because of the convection inside of the cavity of vortices
strongly distorted by the downstream corner interaction. Moreover, such a process is
able to create small structures with significant energy levels and thus it may explain
the differences between the coarse and fine mesh simulations in this region.

As a conclusion, it is possible to state that grid convergence for the flow (in an
LES sense) is reached.

3.2. Comparisons with experiments

As mentioned in § 1, the experimental cavity-flow database provided by QinetiQ
(see Henshaw 2000) is used to validate the computation. The database includes
instantaneous pressure measurements from multiple Kulite sensors located on the
floor of the cavity, a quarter span from the sidewall. The sampling rate is 6 kHz,
and the experimental sampling time is about 3.5 s, seven times larger than for the
simulations. Because of the ‘mode switching’ phenomenon (Kegerise et al. 2004) that
will be discussed in § 5.3, the experimental samples were split into seven blocks with
equal lengths of 0.5 s. All the experimental results dealing with pressure fluctuations
used in this section are therefore displayed as realizability intervals between the
minimum and maximum values computed using these seven data blocks. The only
exception is the frequency of the pressure peaks: because they exhibit very small
variations in time, only the mean value over the seven block is considered. Notice
that all the spectra have been computed using the parametric spectrum estimator of
Burg (or maximum entropy method, see Childers (1978) for details and Huang &
Ho (1990) for an example of use in the field of fluid mechanics). The ability of this
method to generate spectrum estimators with accurately resolved peaks (for both the
frequency resolution and the energy level) while smoothing the base noise level allows
more flexibility than a classical fast Fourier transform periodogram in accurately
comparing data with different sampling times and/or sampling rates. The method is
also especially well-suited for short-time samples, a feature that will be used in § 5.3.

The frequencies of the main pressure modes are given in table 2. The unique
value for each mode is due to the quasi-invariance of these values with regard to
the location of the probes. The first line corresponds to the predictions issued from
Rossiter’s analytical model. It shows that, as expected, the peaks in the pressure
spectra correspond to the Rossiter modes. Globally, the agreement between all the
simulations and the experiments is very good. There is a small shift on the first mode.
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Figure 4. Streamwise evolution of band-integrated pressure fluctuation levels in BISPL (see
table 3 for the band boundaries): −−−−, coarse mesh; · · · , coarse mesh, �t × 2; − − −, fine
mesh; =, experiments.

Rossiter mode 1 2 3 4

Lower bound (Hz) 75 300 550 750
Upper bound (Hz) 175 400 650 850

Table 3. Bounds for integration of the pressure spectra.

The C2 computation exhibits a more significant discrepancy for the higher mode that
could be attributed to larger numerical errors.

To obtain a global representation of the Rossiter peak energy levels for each
simulation at multiple locations, the pressure spectra have been integrated over
frequency bands which encompass each peak frequency, with the streamwise evolution
of the resulting energy levels plotted in figure 4. All frequency bands have a width
equal to 100 Hz and are centred on the mean Rossiter mode frequencies, as shown in
figure 5 which will be further analysed. The detailed frequency band boundaries can
also be found in table 3. Because of their small width and because the peak levels
are 10 dB greater than the base noise level, the values computed using this procedure
are fully significant. In addition to each single Rossiter mode energy level, the sum
over all the Rossiter modes and the total energy inside the band (50 Hz–2000 Hz) are
also displayed. Note that for this last plot, the upper boundary has been reduced
from the theoretical maximum of 3 kHz to 2 kHz to prevent any misinterpretation
due to the use of a filter during the post-processing of wind-tunnel data in order
to alleviate aliasing problems. Globally, the three simulations yield the same error
level on Rossiter modes, lower than 5 dB for all modes at all locations. Such error
levels are far better than those commonly observed in unsteady RANS studies (see
Grace 2001, for some examples). Moreover, the spatial mode shapes are predicted
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Figure 5. SPL pressure power spectra from experiments (black areas) and C computation
(black line surrounded with white) for the ten microphones located on the floor of the cavity.
Grey bands correspond to frequencies over which spectra have been integrated to obtain the
results presented in figure 4.

well. Because the second mode tends to be under-predicted while the third one is
generally over-predicted, the error level related to the total energy over all modes is
reduced, demonstrating that even if there are some small discrepancies regarding the
distribution of energy among modes, the pressure fluctuation energy related to the
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Rossiter phenomenon is very accurately computed. The ‘total’ pressure energy levels
show a similar predictive quality. For the ‘total’ energy, the uncertainty gap related
to the ‘mode switching’ phenomenon is greatly reduced when compared to the total
energy contained in Rossiter modes despite very similar energy levels. This highlights
some form of pressure energy redistribution in time between the base noise and peak
parts of the spectra.

Some of the advanced spectral analyses that will be presented in § 5 are based on the
storage of the full instantaneous field at each time step and therefore require a very
large amount of disk storage. As C and F simulations are in equally good agreement
with the experimental measurements, the C computation has been retained in order
to minimize disk storage and computational time requirements. The C2 computation,
which could have reduced these requirements even more, has been rejected because of
the small discrepancy on the prediction of fourth mode frequency. Consequently, the
remaining part of this paper is related to data coming from the C computation only.
Therefore, in order to ensure a high level of confidence for the forthcoming analysis,
the evaluation of the C simulation has to be studied thoroughly.

Figure 5 shows pressure spectra for the ten Kulite sensors. The capability of the
simulation for an accurate prediction of the pressure peak levels observed in figure 4
is confirmed. The errors on the second mode at locations 1.75 � x/D � 2.75 that were
present in figure 4 are lowered because they arise from a small difference in the peak
width rather than a difference in peak levels. To summarize the small discrepancies
between the computation and the measurements, we note a slight under-prediction
of the frequency of the first mode, some peak level under- and over-predictions for
modes 2 and 3, respectively, and a coherency which is too high for the fourth mode.
Nevertheless, the description of the Rossiter related phenomena can be held as very
accurate. The base levels are also in very good agreement with the experiments, with
the correct spatial dynamics over the whole cavity length. Two discrepancies are
nonetheless discernible: a local one at x/D = 0.75 around 1300 Hz with a rather large
over-prediction of the base noise level and a more global one, which tends to sharpen
the smooth bump around 1900 Hz observed in wind-tunnel experiments.

Both spatial and spectral accuracy of the computation having been validated, cross-
spectra can be used to check the ability of the computation to recover information
dealing with phases and therefore indirectly to evaluate the accuracy of the recovery
of the propagation process on the floor of the cavity. The cross-spectrum estimator
reads:

SXY (f ) = 〈X̂(f )Ŷ ∗(f )〉, (3.1)

where χ̂ (f ) is the windowed fast Fourier transform of the time series χ(t), the asterisk
indicates complex conjugation and 〈.〉 is an averaging operator. A convenient way to
analyse the complex cross-spectrum is to decompose it into two spectra, the squared
coherence spectrum and the phase spectrum, respectively, defined by:

Co2
XY (f ) =

|SXY (f )|2

SXX(f ) SYY (f )
, PhXY (f ) = tan−1

{
Im [SXY (f )]

Re [SXY (f )]

}
. (3.2)

In order to obtain reliable results, 〈.〉 has to be performed over a sufficient number
of blocks. In the present study, 50 windowed blocks with 50% overlapping are used.
This process is applied to both experimental and computational data, thus resulting
in smooth estimators, but with a poor frequency resolution of nearly 50 Hz. The
corresponding graphs are presented for short (1.5 D, figure 6a–c) and large (4.5 D,
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Figure 6. Coherency and phase pressure spectra between locations (a) x/D = 0.25 and
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and x/D = 4.75: experiment (grey area) and C computation (black line).

figure 6d ) streamwise separation lengths, respectively. Considering the squared co-
herence spectra, the agreement is good even for the higher frequencies at large
distance. The only exception is for the second Rossiter peak between locations x/D =
1.75 and x/D = 3.25, x/D = 3.25 and x/D = 4.75. This is probably due to a more
evanescent mode at station x/D = 3.25 in the computation than in the experiments (see
figure 5). The phase spectra issued from the computation are in excellent agreement
with the experimental ones despite the slight difference in the spectral resolution
which induces small frequency shifts; other discrepancies occur in frequency bands
where the squared coherence is low, and therefore are not significant.

A very complete spectral analysis has revealed that all the simulations, and more
precisely the C simulation, exhibit most of the observable features of the experiments.
Note particularly that the Rossiter modes are predicted very well in frequencies (that is
rather common) and in levels (that is far more unusual) over the full cavity length. The
capability of LES to predict shallow-cavity flow has therefore been demonstrated. The
remaining part of this paper will illustrate its capability to improve the understanding
of this class of flow using the instantaneous three-dimensional data fields.
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Figure 7. (a) Momentum thickness and (b) vorticity thickness evolution along
the mixing layer.

4. Mixing layer mean flow analysis
A first analysis of the mixing layer is carried out by computing its momentum

and vorticity thicknesses. Because of the existence of a strong recirculating region
(see figure 3), the correct definitions of these thicknesses are non-trivial because they
rely on the choice of a characteristic velocity inside the cavity. The few cavity studies
there are which include data on shear-layer thickness generally neglect the influence
of the reverse flow. The same approach is retained for the present study. Nevertheless,
thicknesses based on the local true value of the larger reverse velocity have also
been computed, and differences resulting from the use of these definitions will be
highlighted when encountered. Also note that even though high subsonic flow is
considered, the incompressible definition for momentum thickness is retained so as to
allow direct comparison with the aforementioned cavity study. We have nonetheless
to specify that compressible momentum thickness has been computed too and results
in only minor alteration of the results detailed hereinafter. Such a low influence of the
compressibility effects makes sense because the convective Mach number is overall
lower than 0.55. The momentum thickness definition eventually reads:

δm(x, y) =

∫ +∞

z0(x,y)

u(x, y, z)

U∞

[
1 − u(x, y, z)

U∞

]
dz, z0(x, y) = max{ζ/u(x, y, ζ ) ≡ 0}.

(4.1)

The resulting plot for the plane y/D = 0 is drawn in figure 7(a). Note that all
the planes z/D ∈ [−0.25, 0.25] lead to two series of almost superimposed lines. The
layer is found to have a growth rate within the range [0.03, 0.04] for most of the
length of the cavity. Multiple turbulent free mixing-layer experiments lead to similar
results, even if the layer is forced (Huang & Ho 1990). Focusing now on mixing layers
over cavities, and restricting ourselves to the case of a turbulent incoming boundary
layer, spreading rate values very close to the present one have also been observed for
various length to depth ratios at similar Mach numbers (see table 4). However, the
previous observations listed in this table show the existence of an initial high spreading
rate region. It has been postulated, for instance in Forestier et al. (2003), that this
characteristic was due to an early pairing of the coherent structures (‘collective
interaction’ as referred to by Ho & Huang 1982) triggered by a strong forcing
associated to pressure waves. The absence of such an initial region in the present case
could therefore be explained as a consequence of the large streamwise extent of the
cavity (more than ten times larger than cavities considered in the references given
in table 4). The upstream travelling pressure waves related to the Rossiter feedback
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Reference Nature M L/D L/δ0
m ReL ∂δm/∂x

Forestier et al. (2003) Exp.
0.8 0.41 77 8.6 × 105 0.04

Larchevêque et al. (2003) LES
Gloerfelt et al. (2002) LES 0.8 3 65 1.5 × 105 0.03
Present study LES 0.85 5 328 7 × 106 0.03–0.04

Table 4. Comparison of growth rate of mixing-layer momentum thickness for cavities with
turbulent incoming boundary layer.

mechanism may then suffer a higher total damping and scrambling through wave
dispersion all along the highly inhomogeneous mixing layer, resulting in a weaker
and less coherent forcing unable to really accelerate the pairing of the structures.
Another possible influence is the unsteady three-dimensional flow at the upstream
corner that affects the very beginning of the mixing layer where the ‘collective
interaction’ is supposed to take place. These hypotheses are nonetheless difficult to
check as the ‘collective interaction’ itself is difficult to characterize in cavity flows.

Though generally less studied because of the difficulty in obtaining reliable
experimental data dealing with velocity gradients, the vorticity thickness is also
of interest. It is defined as:

δω(x, y) =
U∞

max[z]

[
∂u(x, y, z)

∂z

] . (4.2)

From figure 7(b), it is observed that the mixing layer is roughly composed of two
regions before its inner structure is annihilated in the vicinity of the aft corner. The
first region is located between x/D = 0.1 and x/D =0.7 (6 � x/δ0

m �45). Within these
bounds, the mixing layer exhibits a large growth rate of 0.25. The other region is
characterized by a lower linear growth rate of 0.17. In this second zone, the extension
of the linear region is wider when the reverse velocity inside the cavity is taken into
account to compute δω. This illustrates the fact that in the downstream part of the
cavity the recirculating flow is strong enough to influence the local state of the layer
whose thickness is of the same order of magnitude as the depth of the cavity. Finally,
note that in this second region, the ratio between the spreading rates of momentum
thickness and vorticity thickness reaches a value close to 1/5 which is commonly
observed for a fully developed free mixing layer (see Browand & Trout 1985).

Concerning the high initial spreading rate, it seems reasonable to postulate that it
is due to the existence of nearly two-dimensional tubes of vorticity originating from
the Kelvin–Helmholtz (K–H) instability. For instance, in Larchevêque et al. (2003),
an initial high growth rate up to x/δ0

m � 40 was well correlated with two-dimensional
vortices. The rate was in fact 2.5 times higher than the present one, but this difference
can be seen as another clue to the lower coherent forcing already mentioned.

Some evidence of the presence of two-dimensional structures can be obtained
by computing two-point spatial transverse correlations in the region defined above.
Figure 8 presents the normalized correlations with regard to the transverse distance
ξ for u in the part ξ > 0 and w in the part ξ < 0. For both velocity components, the
spanwise correlation length obviously decreases as the distance to the leading edge of
the cavity increases and tends to reach a plateau beyond x/D � 0.7. Such behaviour
is expected for a mixing layer up to its transitional state. We have to specify that
downstream this location and up to the aft wall influence region, the correlation length
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rises again, as observed in the free shear layers by Browand & Trout (1985) after
mixing transition. The non-vanishing correlation for large distances observed for the
streamwise velocity component is a consequence of the crossing of upstream travelling
two-dimensional strong pressure waves. Because of this propagation direction, w is
less altered and exhibits a standard zero correlation for large ξ .

In order to characterize the K–H instability, its fundamental frequency has to be
estimated. Following Browand & Trout (1985), this can be done by looking at the
mean vortex-passage period Tp defined as the time interval to the first peak of the
velocity fluctuation auto-correlation function. Based on figure 8, the vertical velocity
w is retained in order to alleviate misinterpretation due to the crossing of the Rossiter
pressure waves. The temporal normalized auto-correlation as a function of x/D is
presented in figure 9, and significant temporal correlation levels are observed in the
above-mentioned region x/D � 0.6. At the maximum correlation location x/D = 0.15,
Tp is found to be equal to 0.61 D/U∞, corresponding to a frequency of 4460 Hz.

Using the local vorticity thickness and U = U∞/2, the normalized frequency is found
to be equal to St = 0.14. This value compares very well with St = 0.135 found by
means of linear stability analysis performed by Monkewitz & Huerre (1982). Adding
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Figure 10. Convection velocity estimated using two-point two-time auto-correlation of
vertical velocity: −−−−, numerical results; − − −, Uc = 0.57.

this information to the previous elements, we are finally able to conclude that the
K–H instability is dominant in the initial region of the mixing layer and therefore
should be partially correlated to the large spreading rate observed at these locations.
However, note that beyond x/D = 0.15, the faster increase for δω than for Tp results
in rapidly growing values for the Strouhal number. This has already been mentioned
by Browand & Trout (1985) for free mixing layers, but the final value of St = 0.39
at x/D = 0.6 is 35% larger than the largest values observed by these authors. This
implies the existence of a mechanism complementary to the basic K–H instability
so as to explain the higher growth rate in the vicinity of the fore wall. Note that
instantaneous vortical structure visualizations do not seem to exhibit pairing, making
it difficult to invoke the ‘collective interaction’ to identify this auxiliary mechanism.
The spectral analysis of the mixing layer that will be presented in § 5.1 will provide
more information regarding this point.

A last item of information related to the mixing layer is the convection velocity of
the coherent structures. To obtain this, a classical procedure based on the two-point
two-time correlations along the line (y/D = 0, z/D = 0) is used. The variable retained
for the correlation is the vertical velocity component because it is less sensitive to the
pressure waves than u as already seen in figure 8. The evolution of the convective
velocity is drawn in figure 10. In addition, a dashed line is plotted which corresponds to
the convective velocity that was retained when estimating Rossiter mode frequencies.
Roughly, two regions are discernible. The first one exhibits a constant acceleration
and extends nearly over the region where two-dimensional structures have been
highlighted. It is worth noting that a similar link between strong two-dimensionality
and constant acceleration of the structures has already been observed in the cavity
studied by Larchevêque et al. (2003). The second region is located within the range
2.8 � x/D � 4.4 (180 � x/δ0

m � 285): after a relaxation zone, the velocity tends toward
a plateau corresponding to the value 169 m s−1 = 0.61 U∞, close to that of 0.6 U∞
observed by Ahuja & Mendoza (1995) for small structures in a weakly compressible
cavity. Finally, because of the influence of the aft wall, the velocity drops very fast.
The mean value of the convective velocity over the whole mixing layer is equal to
0.53 U∞, quite comparable with the Rossiter classical value of Uc =0.57 U∞ because
of the uncertainty of the estimator.

5. Spectral analysis
5.1. Velocity and pressure inside the mixing layer

5.1.1. Global analysis

The spectral analysis presented in this section deals with the use of data extracted
from the plane z =0. Because the maximum value of the vertical velocity gradient
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Figure 11. Spectral surfaces along the longitudinal centreline of the mixing layer
(y/D = 0, z/D = 0) : (a) turbulent kinetic energy and (b) pressure fluctuations.

is located in the very vicinity of this plane in almost all the open surfaces of
the cavity, this geometric boundary is fully representative of the true mixing-layer
centre. The storage of instantaneous velocity and pressure data over the whole plane
therefore allows the local spectral characteristics of the mixing layer to be studied.
The spectra have been computed using FFT averaged over 24 blocks with a 50%
overlap resulting in a 24 Hz spectral resolution. For the sake of clarity, the spectra
have also been slightly smoothed to remove the residual noise. We checked that this
procedure did not alter the levels of the peaks.

A first example of this approach is found in figure 11 which presents the evolution
of the turbulent kinetic energy (TKE) k =0.5(u′2 + v′2 + w′2) (figure 11a) and
pressure spectra (figure 11b) along the line (y = 0, z = 0). Both spectra can be roughly
decomposed into three regions with respect to the x-axis. The first one, which
corresponds to the zone where the K–H instability has been identified in § 4, is
characterized by a rapid increase of the global energy level. A bump centred on the
frequency related to this instability mechanism is also clearly seen, and the energy
contained in that bump is larger than the one related to Rossiter modes. Note that this
region will be dealt with separately in § 5.1.2. The second region is located between
x/D =1 and x/D = 4, where there is very little evolution in the global shapes and
levels of the spectra. In the vicinity of the aft wall, the large layer flapping due
to the inflow/outflow process (Rockwell & Knisely 1979) yields an increase of the
fluctuating kinetic energy. Focusing on the Rossiter frequency band, it is obvious that
the Rossiter modes are mainly pressure modes and do not have a large impact on the
velocity field. We can also remark on the streamwise modulation of the mode peak
levels in the pressure spectrum.

Spectra are also modulated with regard to the transverse position, as can be
seen in figures 12 and 13, which display the TKE and pressure spectra at four
equidistant locations in the streamwise direction, respectively. For the first one,
namely x/D = 0.25, both TKE and pressure exhibit the above-mentioned bump with
very similar shapes. More precisely, we observe an almost constant level in the half
transverse central part of the cavity, and a noticeable decrease near the transverse
walls. This feature agrees well with the existence of a confined K–H instability. The
fact that the pressure spectra also exhibit such damping near the walls illustrates that
the phenomenon has a hydrodynamic rather than an acoustic origin. At the three
other locations, the bump is no longer observed and the spectrum is characterized by
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(a) (b)

(d)(c)

0
2000

4000
6000

8000
10000

0
2000

4000
6000

8000
10000

0
2000

4000
6000

8000
10000

0.5
0

2
1
0
–1
–2
–3

2
1
0
–1
–2
–3

–0.5

0.5
0

0.5
0

0.5
0

–0.5

2
1
0
–1
–2
–3
–0.5

2
1
0
–1
–2
–3

–0.5

y/D

y/D

y/D

y/D

Frequency (Hz)

Frequency (Hz)

Frequency (Hz)

Frequency (Hz)

0
2000

4000
6000

8000
10000

lo
g 1

0(
S k

)

lo
g 1

0(
S k

)
lo

g 1
0(

S k
)

lo
g 1

0(
S k

)

Figure 12. Spectral surfaces of turbulent kinetic energy in the mixing layer at four different
locations on the x-axis corresponding to locations (a) x/D = 0.25, (b) x/D = 1.75, (c) x/D =
3.25 and (d ) x/D = 4.75.

(a)
(b)

(d)(c)

0.5
0

0.5
0

0

–0.5

0.5
0

0.5
0

–0.5

2000
4000

6000
8000

10000

0
2000

4000
6000

8000
10000

0
2000

4000
6000

8000
10000

0
2000

4000
6000

8000
10000

150
140
130
120
110
100
90
80

–0.5

150
140
130
120
110
100
90
80

150
140
130
120
110
100
90
80

–0.5

150
140
130
120
110
100
90
80

Frequency (Hz)

Frequency (Hz)

Frequency (Hz)

Frequency (Hz)

y/D

y/D y/D

y/D

S
P

L
 (

dB
)

S
P

L
 (

dB
)

S
P

L
 (

dB
)

S
P

L
 (

dB
)

Figure 13. Spectral surfaces of pressure fluctuation in the mixing layer at four different
locations on the x-axis corresponding to locations (a) x/D = 0.25, (b) x/D = 1.75, (c) x/D =
3.25 and (d ) x/D = 4.75.



Large-eddy simulation of a compressible flow at high Reynolds number 283

(a) (b)

0.5
0.4
0.3

0.2
0.1

0.5

0.5
0.4
0.3
0.2
0.1

0.5

–0.5
0

–0.5
0

0

1

2

3

4
5

0

1
2

3

4

5

x/D x/D

y/D y/D

k R
os

si
te

r/k

k K
–H

/k

Figure 14. Band integrated turbulent kinetic energy inside the shear layer normalized using
the local total turbulent kinetic energy: sum of (a) Rossiter modes and (b) K–H instability.

a smooth slope beyond 1000 Hz, the TKE spectrum being only slightly affected by
transverse walls. Note that at the last station, the TKE spectrum exhibits an inertial
range with a −5/3 slope for about half a decade.

Concerning the low-frequency region, the Rossiter mode peaks are not only less
prominent in the TKE spectra with respect to pressure spectra, but they are also
less two-dimensional. Nevertheless, the transverse modulation, even for the Rossiter
modes, is low enough to allow us to conclude that the flow can be considered as
being homogeneous in the spanwise direction within the bounds y/D ∈ [−0.25, 0.25]
over most of the x-axis. The main exception takes place near the aft wall where the
strong streamwise vortices ejected near the corners induce a strong low-frequency
three-dimensionality that can be clearly seen in figure 12(d ).

Since the frequency band related to the K–H instability has been clearly identified,
it is possible to characterize the corresponding energy by integrating the spectrum.
Therefore, the region [3000 Hz, 6000 Hz] comes in addition to the bounds presented
in table 3. This allows us to analyse the relative local dominance of the two processes
that have been highlighted in the mixing layer. The spatial evolution of the energy
contained inside the K–H band and in the four Rossiter modes is presented in
figure 14, normalized by the total variance of the signal. It is obvious that in the
region where the K–H instability occurs, the associated velocity fluctuations are larger
than that induced by the Rossiter modes. Nonetheless, we can see that in the vicinity
of the fore wall, where velocity is low, the contribution of the Rossiter modes is
significant. Beyond x/D = 0.7, there is no process other than the turbulent cascade to
supply the former K–H frequency band with energy, resulting in a rapid drop of the
kinetic energy in this frequency band. On the contrary, the Rossiter modes account
for up to 40% of the total velocity fluctuations near x/D =1. The relative levels then
slowly decrease because of the fill up of the higher frequencies through the turbulent
energy cascade, but Rossiter modes still remain responsible for about a third of the
fluctuations. However, note that such results have to be moderated slightly since
velocity Rossiter peaks do not usually emerge from the background level. Therefore,
the energy contained in frequency bands related to Rossiter modes could be affected
by other hydrodynamic low-frequency phenomena.

The pressure spectra do not suffer from such restrictions and the analysis of the
Rossiter mode contribution to the total energy is presented in figure 15(a). It can be
seen that apart from the K–H region, Rossiter modes are responsible for roughly half
of the fluctuating energy. In the initial region where the turbulence level is lower, the
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value can even grow up to 75%. The amplitude of Rossiter modes inside the mixing
layer being known, we can also evaluate their phase velocity. To compute it, we may
use a frequency–wavenumber spectrum along the line (y/D = 0, z/D = 0) since it has
been shown that pressure Rossiter modes are almost insensitive to spanwise location.
The spectrum estimator Φ , based on the cross-spectrum between points xi and xj ,
reads:

Φ(f, k) = exp(
√

−1 k xi)Sxi xj
(f ) exp −(

√
−1 k xj ). (5.1)

The result is displayed in figure 15(b). Two mean propagation speeds are identified:
one forward at a normalized velocity of nearly 175 m s−1 = 0.63 U∞ and one backward
with a higher absolute value. The downstream propagation velocity value is slightly
higher than the convective velocity computed in figure 10 to which it is related through
Rossiter’s model. The upstream velocity uup corresponds to the crossing of pressure
waves with an angle α between their propagation direction and the horizontal line
used to compute the frequency–wavenumber spectrum. Assuming that the pressure
wave travels at velocity c + um, the angle α can be estimated, using the mean velocity
approximation um � 140 m s−1 = 0.51 U∞ that holds on the line z/D = 0, equal to about
35◦, which agrees correctly with the pattern observed in figure 1.

5.1.2. Analysis of the Kelvin–Helmholtz instability dominated region

Looking at figures 14 and 15, it is clearly confirmed that the initial growth region of
the mixing layer, which is governed by the K–H instability, radically differs from its
other parts. In order to improve the analysis of this phenomenon, the characteristics of
the velocity fluctuations within the K–H frequency band defined above are presented
in figure 16. Taking advantage of local spanwise homogeneity of the fluctuations, the
integrated K–H energy is computed as:

EV (x) =
2

D

∫ 0.25 D

−0.25 D

∫ 6000

3000

V̂(f, x, y, 0)2 df dy, V = (u, v, w). (5.2)

In figure 16(a), the energies are normalized using the free-stream velocity. The vertical
component is by far the most energetic one in regions where strongly two-dimensional
structures are observed. Down at x/D = 0.15, the other two components have very
similar energy levels, but then v′ saturates sooner. These results obviously show that
the vertical fluctuations are enhanced by a forcing mechanism.
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As the K–H instability acts as a noise amplifier because of its convective nature
within the range of parameters considered in the present study (Huerre & Rossi
1998), it is of interest to normalize the energy levels using their values E0 at the
origin of the mixing layer. The resulting plots are displayed in figure 16(b). Using
this reference, the energy increases in the initial region for vertical and longitudinal
fluctuations scale almost identically, as expected for two-dimensional K–H instability.
However, note that the energy grows with respect to x scales like eα

√
x rather than eαx

as predicted by linear theory. This may be due to the residual non K–H related energy
lying in the considered frequency band since the flow is already turbulent (because of
the incoming boundary layer and the recirculating flow). The transverse fluctuations
evolve quite similarly to the w′ with a small shift in the downstream direction.

The shift is more clearly discernible in figure 16(c), where the energy spatial growth
rate evolutions are drawn: one almost identical maximum growth is reached for w′ and
v′, but delayed in the latter case (see in figure 16(c), (ii) versus (iii)). On the contrary,
two local maxima ((ii) and (iv)) exist for the longitudinal fluctuating energy. The first
one occurs in the same location as for w′. Noting that this location corresponds to the
maximum time correlation in figure 9, the emergence of two-dimensional structures
and the concordance between the frequency predicted by linear stability analysis
and the observed one, it appears that location (ii) corresponds to the maximum of
purely K–H related energy. The shift between the maxima (ii) for the lines (u′,w′)
and (iii) for the v′ line is then interpreted as the delay to transfer energy into the
third dimension. Classically, the mechanism involved for such energy transfer is the
secondary K–H instability (see for instance Huang & Ho 1990). However, no spectral
evidence of such an instability is found. The secondary K–H instability is inhibited,
presumably under the influence of the three-dimensional turbulent structures coming
from the boundary layer and/or the recirculating flow. Under those circumstances,
the transverse fluctuations seem rather to originate from the progressive distortions
of the two-dimensional K–H vortices induced by the existence of three-dimensional
coherent structures.
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Grey bands correspond to the K–H frequency band [3000 Hz, 6000 Hz].

The second peak in the u′ line (iv) appears not to be related to the K–H instability.
To explain this, the u′, v′ and w′ spectra at each of the locations labelled in figure 16(c)
are presented in figure 17(a–c), with the K–H frequency band highlighted. It is
observed, looking at the u′ spectra, that between (ii) and (iv), the energy contained in
the K–H band increases mainly because of the progressive filling up of the spectrum
through the turbulent cascade mechanism. Thus, the evolution of the u′ energy spatial
growth rate corresponds to a competition between a decreasing K–H instability
responsible for peak (ii) and an increasing turbulent cascade yielding peak (iv). A
similar competition exists for the two other velocity components, but the K–H peak
emerges more clearly from the turbulent background At least two reasons could
explain the faster filling of the u′ spectrum. First, low-frequency u′ energy largely
increases between (i) and (iv). Remarking that a similar though less marked growth
occurs for w′ contrary to v′, it is advocated that Rossiter pressure mode forcing is
responsible for the energy injection. Secondly, harmonic peaks progressively rise near
frequencies 2 × fK−H and 3 × fK−H, especially in u′ spectra. Similar nonlinear upper
harmonics have been observed experimentally (see for instance Miksad 1972) for
forced mixing layer, generally related to nonlinear interactions between primary and
secondary K–H structures (Huang & Ho 1990). Since there is no evidence of the exi-
stence of secondary K–H vortices, the presumed nonlinear interactions observed in
the spectra of figure 17 must be analysed to understand better the reinforcement of
the small-scale energy.

Bispectral analysis is the preferential tool to study quadratic interactions between
time series X(t), Y(t) and Z(t) (see for instance Helland, Van Atta & Stegun 1977,
for an application within the turbulence field). Following Kim & Powers (1979), its
normalized magnitude, the (squared) bicoherence can be estimated as:

Bic2
XYZ(f1, f2) =

|〈X̂(f1) Ŷ (f2) Ẑ
∗(f1 + f2)〉|2

〈|X̂(f1) Ŷ (f2)|2〉 〈|Ẑ(f1 + f2)|2〉
. (5.3)

Significant levels of bicoherence is an indication of quadratic coupling and the
spectra of figure 17, which do not involve a very broadband process, should help
in interpreting the results. According to Haubrich (1965) and Elgar & Guza (1988)
the 99% significance level for true zero bicoherence using the estimator (5.3) is
Bic2

99% � 9.2/ν, where ν is the number of degrees of freedom, here equal to twice
the number of blocks used in the average process E[.]. The time series being split
into 48 overlapping blocks and the partial homogeneity of the flow in the transverse
direction allowing an additional averaging over 50 points, the bound value is found to
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be 2 × 10−3. Since transverse points are partially correlated, this value is presumably
underestimated and only values at least ten times higher are plotted on the coherence
spectra at location x/D =0.15 that are presented in figure 18.

From figure 18(a), it is seen that high u auto-bicoherence levels are found on
the one hand for f1 � 8800 Hz and f2 being an harmonic of 4400 Hz and on the
other hand for f1 belonging to the Rossiter mode band ± [100 Hz, 600 Hz] and
f2 � 8800 Hz. For w auto-bicoherence in figure 18(b), the only significant level is
encountered for frequencies f1 = f2 � 4400. Figures 18 (c) and 18 (d ) are dedicated
to cross-bicoherence. From the first one, it is seen that there is almost no quadratic
interaction between uu and w. In contrast, the second one reveals multiple significant
triadic interaction areas between ww and u. The highest level of nearly 0.3 is
encountered for f1 = f2 = 4400 Hz. Because of the difference in spectral energy levels
between ŵ(4400 Hz) and û(8800 Hz), it appears that this interaction is responsible
for the 8800 Hz peaks in the spectra of figure 17. Other lower, but still significant,
bicoherence levels are found between harmonics of 4400 Hz for both u and w as
well as between broadband high frequencies for w and Rossiter modes for u. For the
first interaction, the autospectra do not allow us to determine the direction of the
energy transfer. For the second one, energy is more likely to be transfered from u to w

because of the large energy gap. Moreover, it could be interpreted as a consequence of
a linear correlation between u′ and w′ for high frequencies with, formally, the already
mentioned nonlinear transfer from Rossiter mode bands to high frequencies for u,
followed by linear interaction between u and w. This hypothesis holds since significant
levels of (linear) squared coherence between u and w are found for the frequency
regions in the vicinity of 8800 Hz and 13 200 Hz, as seen in figure 19. Eventually, it is
worth noting that no bicoherence involving transverse velocity is presented because it
leads to uniformly non-significant levels. Therefore, as for the K–H frequency band,
harmonic peaks that exist in v′ spectra are believed to be due to three-dimensional
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energy redistribution through either pressure waves or distortions of two-dimensional
structures.

Using the aforementioned information coming from velocity spectra, cross-spectra
and bispectra of figures 17 to 19 , the scenario for the energy budget of the mixing
layer at its early stage could be summarized as follow:

(i) The vertical velocity component w is subject to an initial forcing at frequency
ffor � 4400 Hz.

(ii) Through nonlinear interactions, energy is transferred from ŵ(ffor) toward
ŵ (2 × ffor).

(iii) A quadratic cascade process initiates for u from 2 × ffor to higher harmonics of
ffor which are also partially fed by triadic interaction with the low-frequency highly
energetic Rossiter modes.

(iv) Mostly because of linear interactions, energy from the small scales of u is
transferred to the small scales of w, jointly with a auto nonlinear transfer originating
from ŵ(ffor).

Once the nonlinear analysis of the mixing layer has been performed, the open
problem of the origin of the forcing upon the vertical velocity component w still
remains. First, we have to check that it is not simply related to a distant influence
of the developed K–H instability because of upstream travelling pressure waves.
This hypothesis is investigated through the analysis of the cross-spectrum between
p at location x/D = 0.15 and w near the origin of the shear layer (x/D = 0.015)
presented in figure 20. Three bands of high squared coherence are seen, including the
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the mixing layer at location x/D = 0.015: (a) pressure–pressure squared coherence and
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K–H one. However, the phase spectrum reveals that this last-mentioned corresponds
to a downstream convection with a phase velocity equal to the local convective
velocity found in figure 10. Nonetheless, note the upstream oriented influence for high
frequencies owing to the excitation of the initially low energetic w′ small scales by
the pressure waves emitted by the structures created downstream through nonlinear
interactions.

Since the forcing acts preferentially on the vertical velocity, one other possibility
is that it is related to an acoustic cavity mode including a vertical component.
Unfortunately, time series have not been stored for the vertical walls. However, we
can compute a cross-spectrum between the floor of the cavity and the mixing layer.
Figure 21 shows the squared coherence at location x/D = 0.015 between p on the
floor of the cavity and, respectively, p (figure 21a) and w (figure 21b) inside the
mixing layer. From figure 21(a), apart from the Rossiter modes, three peaks of
high coherence labelled (0,1,0), (0,2,0) and (0,3,0) are detected. They correspond to
transverse acoustics modes, as will be demonstrated in § 5.2, with their frequencies
agreeing with the theoretical frequencies of the acoustic proper modes of a cavity
with five rigid walls and a top open end. Two such acoustic modes with a non-zero
vertical number yield frequencies lying within the K–H band: f0,2,1 = 4150 Hz and
f0,1,2 = 4370 Hz. No peak corresponding to the latter frequency appears, but one with
a frequency equal to 4160 Hz exists both for p–p and p–w bicoherence. However,
the coherences observed at its frequency are too low to explain completely the forcing
observed on w.

5.2. Pressure on the floor of the cavity

5.2.1. Global analysis

The very same spectral analysis carried out in § 5.1.1 but restricted to pressure
is applied to the floor of the cavity. Figure 22 presents the evolution of the
pressure spectra for the two streamwise lines (y/D, z/D) = (0, −1) (figure 22a) and
(y/D, z/D) = (0.25, −1) (figure 22b). Concerning the Rossiter modes, we can see
a strong modulation of mode amplitude with respect to the streamwise location,
independent of the spanwise location. A global almost exponential decrease of the
base levels between the aft and fore walls is also observed on the two parts of the
figure. The main difference between the two plots appears to be the existence of
different peaks above the Rossiter mode frequency area: about 3400 Hz and 6350 Hz
for the centreline and nearly 1800 Hz, 4850 Hz and 6350 Hz for the quarter-width line.
Note that such peaks generally persist over the whole streamwise range.
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Figure 23. Spectral surfaces of pressure fluctuations on the floor of the cavity at four
different locations on the x-axis corresponding to locations (a) x/D = 0.25, (b) x/D = 1.75,
(c) x/D = 3.25 and (d ) x/D = 4.75.

In addition to streamwise spectra, the evolution of pressure spectra along the span
is presented in figure 23 at four streamwise locations. Such plots first reveal an even
more two-dimensional behaviour of the Rossiter modes on the floor of the cavity
than inside the mixing layer. The non-Rossiter-related peaks are also recovered and
exhibit very regular spanwise patterns which allows us to conclude that such peaks
correspond to transverse acoustic modes. The differences mentioned when studying
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the two parts of figure 22 are consequently explained by the location of the nodes
and anti-nodes of such modes.

As previously mentioned in § 5.1.2, the frequencies of the above-highlighted spanwise
acoustic modes are predicted well using the theoretical formula related to the proper
mode of a cavity at rest with one open end. The fundamental (0,1,0) and the first
harmonic (0,2,0) are the dominant modes, and higher harmonics (0,3,0), (0,4,0) and
even (0,5,0) are reinforced in the vicinity of the wall.

5.2.2. Rossiter modes

In the same way as figure 15 for the mixing layer, figure 24(a) exhibits phase
velocity, and figure 24(b) amplitude information related to the Rossiter modes on
the floor of the cavity. From figure 24(a), two phase velocities are observed: the
upstream propagation at velocity uup corresponds to pressure waves travelling with
velocity equal to the speed of sound c. By neglecting the reverse flow, the velocity uup

observed on the floor line allows us to estimate the angle α between the wave front
and the floor as nearly equal to α � 45◦. The downstream component value is related
to pressure waves emitted by the vortical structures of the layer and travelling almost
vertically down to the floor. Concerning figure 15(b), we observe that the sum of
Rossiter mode energy levels normalized by the local value of p′2 is higher than inside
the mixing layer: the Rossiter modes globally contribute for a constant value of 60%
to the total p variance, except around x/D = 4 where the contribution drops to 40%.

The study of the individual Rossiter modes band-integrated energy presented in
figure 25 allows us to explain this feature. The energy level related to each of the
Rossiter modes exhibits nodes with respect to the x-coordinate. Therefore, the drop in
the total Rossiter mode energetics contribution around x/D = 4 is a consequence of
the existence of nodes for modes 2 to 4 in the close vicinity of that location. We may
remark that very similar mode shapes have already been reported for closely related
experimental configurations (L/D = 4 and M =0.8, see Heller & Bliss 1975). They
also bear some resemblance to cavity acoustic proper mode subject to exponential
damping.

According to Ahuja & Mendoza (1995), the shapes of the modes are due to a
complex combination of the pressure related to mixing-layer instability waves and
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Figure 25. Band integrated SPL for Rossiter modes: (a) first mode, (b) second mode,
(c) third mode and (d ) fourth mode.

the acoustic pressure waves, as observed also for upstream tone excited jets. Tam &
Morris (1985) have modelled this ‘receptivity problem’ by means of a quasi-linear
formulation. They show that for such an interaction to occur requires that the two
kinds of wave are of comparable amplitude, the wavelength of the observed pattern
being approximatively equal to that of the mode with the shortest wavelength. In
the present case, the amplitude hypothesis is indeed verified in the initial region
of the mixing layer, as can be seen in figure 13(a), but beyond, there is no further
evidence of energetic K–H instability. Moreover, the modulation by the wavelength of
a single instability could hardly explain the reducing wavelength of the shape pattern
as the mode number increases. Nevertheless, downstream-travelling vortices could
play a role similar to instability waves, and their theoretical wavelength λω = κ U∞/f

could correspond. Note that such distinction between short- and long-wavelength
instability waves has already been highlighted in high-Reynolds-number cavity flow
(Lin & Rockwell 2001).

To validate the hypothesis concerning the origin of the shape of the mode, we can
suppose, in the same way as Rossiter’s model and following Heller & Bliss (1975),
that the pressure modes on the floor of the cavity can be modelled as the sum of
two plane pressure waves with the same amplitude: a downstream propagating one
related to the coherent structures in the mixing layer, as their pressure traces are
observed even on the floor (see figure 24), and an upstream propagating one. White
noise (WN) is then added so has to mimic some effects of the turbulent background
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Mode number i 1 2 3 4

αi 11.004 10.524 11.236 10.021
βi 4.278 6.492 5.058 4.821

Table 5. Coefficients issued from the fitting of the Rossiter mode amplitude.

flow, and the proposed model for pressure fluctuation reads:

p(x, t) =

4∑
i=1

Ai(x)

{
cos

[
2πfi

(
x

u+

− t

)
+ Φ

]
+ cos

[
2πfi

(
x

u−
− t

)]}

+ AWN (x) WN(x, t), (5.4)

where Ai(x) and fi are the amplitudes and frequencies of the Rossiter modes, u+ and
u− are the velocity of the downstream and upstream travelling waves, Φ is the phase
shift between the two kinds of waves at origin and AWN(x) is the amplitude of the
added white noise WN(x, t).

In order to obtain an accurate evaluation of the proper shape of the square of
the Rossiter modes, we have to remove the contribution of the base level to the
band-integrated energy. This is performed by both assuming that the spectral density
at the two bounds of a band is free from energy coming from the corresponding
Rossiter mode and that there is a linear evolution of the base level between these
bounds. Then, taking into account the two-dimensionality of the Rossiter modes seen
in figure 25, the span smoothed ERi

corrected energy due to each modes reads:

ERi
(x) =

1

W

∫ 0.5W

−0.5W

{∫ bi

ai

Spp(f, x, y) df − bi − ai

2

[
Spp(ai, x, y) + Spp(bi, x, y)

]}
dy,

(5.5)

where ai and bi are, respectively, the lower and upper bounds of the frequency band
related to the ith Rossiter mode. The values for the Ai =1,...,4 are obtain by a least-
squares fitting of the resulting shape using the functions Ai(x)2/2 = exp (αi + βi x),
thus leading to the coefficients in table 5, and AWN(x)2 is computed so as to correspond
to 40% of the

∑
i Ai(x)2, as seen in figure 24. According to figure 15, u+ = 175 m s−1

and it is assumed that the velocity of the upstream travelling waves is the speed of
sound on the floor of the cavity, i.e. u− = − 340 m s−1.

From table 5, we can see that the damping rate is very similar for modes 1, 3
and 4 and slightly higher for mode 2. We can therefore use this kind of similarity to
obtain the normalized mode shapes by dividing the energy level of a mode by the
sum over all the modes of the energy levels. Such a normalization allows us to obtain
a convenient plot for the shape of the mode, as seen in figure 26(a), which clearly
highlights a local highly symmetric pattern with respect to the location x/D � 2.3.
The last parameter of the model, namely Φ , which acts by globally shifting all the
proper shapes in the streamwise direction, is therefore adjusted so as to obtain the
same quasi-symmetry axis location, resulting in Φ/2π = 0.33. Note that for Rossiter’s
model, there is a phase shift at the end of the cavity rather than at the origin. However,
the value of Φ/2π = 0.33 is close to γ = 0.29 of Rossiter’s model for L/D = 5. Finally,
the phase shift can be seen as a way to take into account the far from constant
velocity of the structures in the beginning of the shear layer. Therefore, the model is
not expected to behave well near the fore wall.
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The normalized squared shape found from (5.4) and the above set parameters are
plotted in figure 26(b). As postulated, the results are not good for the beginning of the
cavity. Nonetheless, the agreement with the measurements is very favourable in the
region 1.25 <x/D < 4, with an accurate prediction of both the relative amplitudes and
node/anti-node locations except for a node shifted to the left for mode 1. However, it is
advocated that mode 1 yields the less measured-wave characteristic shape, presumably
because of the interactions with low-frequency large hydrodynamic structures. The
model does not allow us to obtain a non-zero fluctuation node, contrary to what it is
observed from the simulation results for mode 3 at location x/D = 2.3. Consequently,
the relative amplitudes of the anti-node for mode 2 are slightly over-evaluated.
Nonetheless, an imperfection of the procedure used to remove the base level of the
pressure spectrum near the peak frequencies could be responsible for such a non-
zero node level. Above x/D = 4, a marked non-zero node for mode 3 occurs, largely
altering the predictions of the relative amplitudes, but the node locations are still
correctly recovered.

To conclude this study of the Rossiter modes on the floor of the cavity, it is of
some interest to check possible non-linear interactions between modes, as highlighted
by Rockwell & Knisely (1980) for incompressible case and Kegerise et al. (2004) for
subsonic inflow conditions. This is performed through the use of bispectral tools,
as for velocity inside the mixing layer. However, the narrower frequency bands of
interest require us to increase the size of the FFT data block so as to increase the
spectral resolution, and therefore to reduce the number of averaging blocks, leading
to an increased level of uncertainty. To partially compensate for this drawback, the
FFT results are averaged for the 100 span points instead of 50 previously retained
by taking advantage of the two-dimensionality of the Rossiter modes. Since the span
points are highly correlated, the significance level for true zero bicoherence must be
multiplied by a factor of three compared to the previous analysis.

The resulting auto-bicoherence spectra are presented in figure 27 for two locations
in the vicinity of the walls, where the highest levels are. Globally, significant nonlinear
coupling is observed for almost each couple of Rossiter mode frequencies. The highest
values are found for the interaction of mode 3 with itself: 0.26 near the fore wall
(figure 27a) and 0.22 near the aft wall (figure 27b). Such maximal values lie between
those observed experimentally by Kegerise et al. (2004): higher bicoherence values of
0.55 if the sum (or difference) of two mode frequencies matches a third mode frequency
and lower bicoherence values of nearly 0.15 if not, as in the present case. Lower
levels of nearly 0.20 are encountered for couplings between mode 3 and mode (−1)
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Figure 27. Auto-bicoherence spectra for pressure on the floor of the cavity at locations
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(figure 27a and b) and mode (−3) with mode 4 (figure 27a). They could be responsible
for the small bumps observed here and there near 250 Hz and 450 Hz in figure 5.
There are also high levels of bicoherence for an interaction between mode 3 and
frequencies lower than 50 Hz. Note that, similar to the observations made by Kegerise
et al. (2004), these low-frequency bicoherence components do not correspond to the
sum or difference of Rossiter mode frequencies. They could be related to a modu-
lation of the Rossiter modes by large-scale flow structures; see for instance Lin &
Rockwell (2001) for an example of such a modulation.

5.3. Joint time–frequency analysis of the Rossiter modes

From the joint analysis of the experimental and computed pressure spectra, there is
some evidence that the pressure signal is not strictly stationary. Some other studies
have already observed such behaviour, characterized either by a temporal variation
of the frequency of the mode (jitter effect, see Forestier et al. 2003; Larchevêque
et al. 2003) or a period to period variation of the dominant Rossiter mode (‘mode
switching’, Kegerise et al. 2004). Two ways have been used to characterize such
variations. The first relies on the rapid schlieren visualization of the number of large
vortical structures that exist in the core of the mixing layer. However, as can be
verified by phase averaging (Forestier et al. 2003; Larchevêque et al. 2003), there is
not always a direct relation between the mode number and the number of vortices
that are discernible at a given time. Moreover, this approach can be biased if two
modes of similar amplitude exist in the same time interval.

Another less empirical way is to use joint time–frequency spectral analysis of the
data. One of the simplest tools for achieving such analysis is to use the so-called
short-time Fourier transform (STFT) inspired by the work of Gabor (1946). The
STFT of a given signal p(t) reads:

STFT(t, f ) =

∫ +∞

−∞
p(τ ) w(τ − t)e−

√
−1 2πf τ dτ, (5.6)

where w(t) is a sliding temporal window function. Because of the uncertainty principle
which states that �t × 2π�f � 1/2, we have to make a compromise between temporal
and spectral resolution. In the present study, we have chosen to consider a time interval
corresponding to two periods of the lower Rossiter modes, which leads to a 1666 point
segment with a sampling rate of 100 kHz. The resulting discrete Fourier transform
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Figure 28. Time–frequency analysis of the pressure signal at location x/D = 4.985. Evolution
of frequencies of the four Rossiter modes (a), and comparison between the BISPL levels of
mode 3 (dotted, b–d ) and mode 1 (solid, b), 2 (solid, c) and 4 (solid, d ). The time is normalized
using the duration of one period of the first Rossiter mode and grey bands highlight periods
of ‘mode switching’ between the second and third modes.

therefore corresponds to a frequency resolution of 60 Hz, which requires a STFT time
step greater than 1.3 ms. It has therefore been fixed at 1.66 ms, corresponding to 90%
overlapping successive segments. However, with such a large-frequency resolution, is
is difficult to discriminate Rossiter mode energy as for the BISPL technique.

Our solution for partially overcoming this problem is to use a Burg estimator rather
than a traditional FFT one. As has been mentioned previously, such an approach
makes it possible optimize, in some mathematical sense, the frequency locations of
the points that describe the spectrum shape, without formally increasing the spectral
resolution. In a stationary Burg spectral analysis, no window is applied beforehand
to the signal (which formally corresponds to a square window), contrary to classical
FFT-based estimators. It has therefore been decided to maintain this characteristic by
using a square sliding temporal window w(t) = I[−1/f 1,1/f 1](t). Since a Burg estimator
is parametric, the order of the model (number of poles) has to be determined. Based
on some tests, it has been set to a fifth of the number of points in the data segment.
Analogously, the time-frequency spectral estimator defined in that way is hereinafter
referred to as a short-time Burg transform (STBT).

To obtain the energy levels corresponding to each Rossiter mode, the same
procedure as for the stationary analysis is used, relying on the integration of the
pressure spectra over the frequency bands given in table 3. The frequency of the
mode is then estimated as the frequency of the energy centroid over the related band.

Figure 28 illustrates the results of the process for a location where significant
low-frequency nonlinear interactions were observed in § 5.2.2. From figure 28(a), it is
seen that there are only small temporal evolutions of the frequency of the modes.
On the contrary, figure 28(b–d ) shows that the levels of the mode are significantly
time modulated. For modes 1 and 3, the amplitudes in the variation of the level are
close to 10 dB, when they are approximatively equal to 7.5 dB and 5 dB for mode 2
and 4, respectively. These modulations are fully spanwise correlated and the Fourier
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Figure 29. (a) Time–space evolution of the dominant Rossiter mode interpolated from the
ten streamwise experimental measurement locations on the floor of the cavity and (b) issued
from the LES on the floor of the cavity and (c) inside the mixing layer: black, mode 1; dark
grey, mode 2; light grey, mode 3; white, mode 4. The time is normalized using the duration of
one period of the first Rossiter mode.

transforms of the mode level time series exhibit very low-frequency components
between 5 and 35 Hz, independently of the streamwise location considered. For the
third Rossiter mode in particular, two marked enharmonic peaks at frequencies 7.5 Hz
and 15 Hz are encountered. Such low-frequency modulations could therefore explain
the high bicoherence levels involving low frequency and the third Rossiter mode that
are observed in the pressure bispectra. Also note that the frequencies seem too low to
correspond directly to a modulation by large-scale hydrodynamics, whose frequency
estimated from the recirculation inside of the cavity scales like 40 Hz.

Figure 28 also underscores ‘mode switching’ between modes 2 and 3 for times
t∗ = t × fRossiter 1

� 38 and t∗ � 54 that are highlighted by grey bands: for duration of
about three periods of the first Rossiter mode, the level of mode 3 drops as the level
of mode 2 increases in return. Conjointly, the frequency of the second mode tends to
be slightly shifted upwards. Note that for other locations, ‘mode switching’ between
modes 1 and 3 is also observed.

Because of the ‘mode switching’, it is of interest to consider the concept of dominant
mode, classically defined as the mode with the highest inner energy. By taking
advantage of the spanwise independence for the level of the modes time series, we
are able to draw a time–space map of the dominant Rossiter pressure mode at
specified time and streamwise location. Such maps are displayed for the experimental
measurements in figure 29(a) and for the LES on the floor of the cavity and inside the
mixing layer in figures 29(b) and 29(c), respectively. Note that the experimental map
is computed from the only ten available streamwise locations and then interpolated
for the other ones, thus leading to areas with smooth boundaries. Nonetheless the
comparison of figures 29(a) and 29(b) shows good agreement for the streamwise
and unsteady dominant mode evolution between the experiment and the LES. The
differences are mostly due to the small discrepancies mentioned in § 3.2: slightly
over-evaluated modes 1, 2 and 4 and slightly under-evaluated second mode. For both
maps, temporal variation of the dominant mode over several periods of the first
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Rossiter mode are observed. We are therefore able to conclude that for the class of
cavity flow where several Rossiter modes with close peak levels coexist, the concept
of dominant mode is quite irrelevant because of its space modulation and above all
its temporal variability over large duration due to the ‘mode switching’. Finally note
that, as expected, the comparison of the dominant mode maps issued from the floor
of the cavity and the mixing layer shows that, despite different spatial distribution,
the temporal modulations for the levels of the Rossiter modes are quite synchronized
over the whole cavity volume.

6. Synthesis and conclusions
Large-eddy simulations of a high-Reynolds-number three-dimensional cavity flow

have been carried out.
The comparisons of the numerical results with the experimental pressure

measurements for the very same configuration demonstrate very good agreement.
It includes the prediction of the spectrum peak level with an error lower than 5 dB for
each of the locations tested and the recovery of the correct cross-spectra information
(phase and coherence) between the probes. Such meticulous validation procedure
allows therefore a high level of confidence concerning the numerical data that cannot
be compared with experiments because of unavailable velocity data.

Concerning the mixing layer, two regions have been identified along the cavity
length. First, a Kelvin–Helmholtz zone that extends over one sixth of the cavity and
can itself be decomposed into several sub-regions. Initially, in contrast with a free
mixing layer, narrow-band vertical velocity fluctuations prevail over streamwise and
spanwise ones in the very vicinity of the fore wall and this unusual characteristic is
seen as the signature of a forcing mechanism at the high frequency of nearly 4500 Hz.
Though a depth acoustic mode could be partially involved in the forcing, its origin is
not clear.

Then, up to x/D = 0.15, energy redistribution between the velocity components
occurs. The joint use of cross-spectra to highlight linear energy transfer between
identical frequencies, bispectra to demonstrate significant quadratic (triadic)
interactions and auto-spectra to determine the direction of the transfer has yielded
the following scheme: the initially 4400 Hz vertical fluctuations reinforce the near
8800 Hz vertical fluctuations through triadic interactions. Then streamwise velocity
component triadic transfers take place from combinations of 4400 Hz and 8800 Hz
frequencies up to higher ones, initiating the turbulent cascade process fed by low-
frequency Rossiter-mode-related fluctuations. For the high frequencies, energy is next
linearly transfered from the streamwise velocity to the two other components.

The location x/D = 0.15 corresponds both to the end of the region where significant
quadratic interactions take place, to the coincidence of the forcing frequency with
the local most amplified K–H one and to the apparition of mainly two-dimensional
spanwise vortical tubes emerging from the three-dimensional turbulent background.
The spanwise integral length downstream decreases up to the location x/D = 0.7
where the mixing transition is achieved and preferentially two-dimensional structures
are no longer seen.

The second region of the layer (between x/D = 0.7 and x/D = 4.8) is characterized
by a behaviour very similar to a free developed shear layer. Its vorticity thickness
increases linearly, but it is demonstrated that the recirculating flow has to be
considered as soon as the thickness reaches a magnitude similar to the depth of
the cavity.
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The pressure has been analysed on planes corresponding to the floor of the cavity
and the centre of the mixing layer. Whatever the location considered inside these
two planes, four peaks whose frequencies below 1000 Hz correctly agree with the
Rossiter model prediction are encountered in the pressure spectra. These peaks
are responsible for 40% to 60% of the total pressure fluctuation inside the cavity,
thus illustrating the turbulent nature of the flow. It is also shown that each peak
level is spanwise independent, but is largely modulated in the streamwise direction.
By means of a simple two-wave model inspired by Rossiter’s interpretation of its
semi-empirical model, it is demonstrated that such modulation originates from the
interaction between an upstream acoustic wave and a downstream vortical wave of
similar amplitude. The correct prediction of frequencies and proper shape by means
of models based on the same hypothesis allows us to clarify the concept of Rossiter
modes. The pressure bispectrum highlights nonlinear interaction between the third
Rossiter mode and very low frequencies. Such low frequencies are also encountered for
time modulation of the amplitude of the modes as revealed by joint time–frequency
analysis, especially for the third mode. It is also demonstrated from the the experiment
and the computation that, for this cavity, the dominant Rossiter mode is both space-
and time-dependent.

Apart from the four Rossiter modes, four to five peaks of frequencies higher than
1800 Hz and exhibiting spanwise modulations are observed on the floor of the cavity
only. Their frequencies and proper shapes lead us to categorize them as spanwise
acoustic proper modes of the cavity.

To conclude, dominant and auxiliary mechanisms for a high-Reynolds-number
cavity flow have been identified and analysed. In some future works, it should be of
interest to focus on the Rossiter mode intermittency as an improved understanding of
their mechanisms could lead to some insights in the control of cavity-flow oscillations.
The initial region of the mixing layer also requires further analyses to identify the
origin of the forcing mechanism. Note that such analyses could take advantage of the
use of high-order spatial schemes to reduce mesh constraints while preserving a high
accuracy level. Lastly, the meticulous analysis of high-Reynolds transitional or even
non-resonant closed-cavity flow fields should also be considered.

L. L. wishes to thank Dr L. Jacquin and Dr E. Manoha for the fruitful discussions
about some aspects of vortices dynamics and acoustic wave analysis tools.

REFERENCES

Ahuja, K. K. & Mendoza, J. 1995 Effects of cavity dimensions, boundary layer, and temperature
on cavity noise with emphasis on benchmark data to validate computational aeroacoustic
codes. NASA Contractor Rep. 4653.

Bilanin, A. J. & Covert, E. E. 1973 Estimation of possible excitation frequencies for shallow
rectangular cavities. AIAA J. 11, 347–351.

Block, P. J. W. 1976 Noise response of cavities of varying dimensions at subsonic speeds. NASA
TN D-8351.

Browand, F. K. & Trout, T. R. 1985 The turbulent mixing layer: geometry of large vortices.
J. Fluid Mech. 158, 489–509.

Cattafesta, L. N., Garg, S., Choudhari, M. & Li, F. 1997 Active control of flow-induced cavity
resonance. AIAA Paper 97-1804.

Childers, D. G. (ed.) 1978 Modern Spectrum Analysis , chap. 2, pp. 23–148. IEEE Press, New York.

Colonius, T. 2001 An overview of simulation, modeling, and active control of flow/acoustic
resonance in open cavities. AIAA Paper 2001-0076.

East, L. F. 1966 Aerodynamically induced resonance in rectangular cavities. J. Sound Vib. 3, 277–287.
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Gloerfelt, X., Bailly, C. & Juvé, D. 2003 Direct computation of the noise radiated by a subsonic
cavity flow and application of integral methods. J. Sound Vib. 266, 119–146.
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